Isolas of 2-Pulse Solutions in Homoclinic Snaking Scenarios

نویسندگان

  • Jürgen Knobloch
  • David J. B. Lloyd
  • Thomas Wagenknecht
چکیده

Homoclinic snaking refers to the bifurcation structure of symmetric localised roll patterns that are often found to lie on two sinusoidal “snaking” bifurcation curves, which are connected by an infinite number of “rung” segments along which asymmetric localised rolls of various widths exist. The envelopes of all these structures have a unique maximum and we refer to them as symmetric or asymmetric 1-pulses. In this paper, the existence of stationary 1D patterns of symmetric 2-pulses that consist of two well-separated 1-pulses is established. Corroborating earlier numerical evidence, it is shown that symmetric 2-pulses exist along isolas in parameter space that are formed by parts of the snaking curves and the rungs mentioned above.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study of secondary heteroclinic bifurations near non-reversible homoclinic snaking

We discuss the emergence of isolas of secondary heteroclinic bifurcations near a non-reversible homoclinic snaking curve in parameter space that is generated by a codimension-one equilibrium-to-periodic (EtoP) heteroclinic cycle. We use a numerical method based on Lin’s method to compute and continue these secondary heteroclinic EtoP orbits for a well-known system.

متن کامل

Swift-Hohenberg equation with broken reflection symmetry.

The bistable Swift-Hohenberg equation possesses a variety of time-independent spatially localized solutions organized in the so-called snakes-and-ladders structure. This structure is a consequence of a phenomenon known as homoclinic snaking, and is in turn a consequence of spatial reversibility of the equation. We examine here the consequences of breaking spatial reversibility on the snakes-and...

متن کامل

Snaking and isolas of localized states in bistable discrete lattices

We consider localized states in a discrete bistable Allen-Cahn equation. This model equation combines bistability and local cell-to-cell coupling in the simplest possible way. The existence of stable localized states is made possible by pinning to the underlying lattice; they do not exist in the equivalent continuum equation. In particular we address the existence of ‘isolas’: closed curves of ...

متن کامل

Defect-mediated snaking: A new growth mechanism for localized structures

Stationary spatially localized patterns in parametrically driven systems are studied, focusing on the 2:1 and 1:1 resonance tongues as described by the forced complex Ginzburg–Landau equation. Homoclinic snaking is identified in both cases and the nature of the growth of the localized structures along the snaking branches is described. The structures grow from a central defect that inserts new ...

متن کامل

Snaking of Multiple Homoclinic Orbits in Reversible Systems

We study N -homoclinic orbits near a heteroclinic cycle in a reversible system. The cycle is assumed to connect two equilibria of saddle-focus type. Using Lin’s method we establish the existence of infinitely many N -homoclinic orbits for each N near the cycle. In particular, these orbits exist along snaking curves, thus mirroring the behaviour one-homoclinic orbits. The general analysis is ill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010